طریقه پیدا کردن مساحت زیر منحنی توسط انتگرالها

ما در این قسمت می خواهیم مساحت زیر منحنی (y = f(x وx=a ,x=b را در چندین  مورد مطالعه قرار بدهیم:

1- منحنی که کاملا بالای محور طولهاست

2-منحنی که کاملا زیر محور طولهاست

3-منحنی که قسمتی از آن در زیر محور طولها و قسمتی از آن در بالای محور طولهاست

4- منحنی های معینی که به محور عرض ها نزدیک می شوند 


mathImage

 Area Under a Curve

by M. Bourne


We met areas under curves earlier in the Integration section (see 3. Area Under A Curve), but here we develop the concept further. (You may also be interested in Archimedes and the area of a parabolic segment, where we learn that Archimedes understood the ideas behind calculus, 2000 years before Newton and Leibniz did!)

It is important to sketch the situation before you start.

We wish to find the area under the curve y = f(x) from x = a to x = b.

We can have several situations:

Case 1: Curves which are entirely above the x-axis.

mathImage

In this case, we find the area by simply finding the integral:

mathImage

Where did this formula come from?

Area Under a Curve from First Principles

In the diagram, a "typical rectangle" is shown with width Δx and height y. Its area is yΔx.

If we add all these typical rectangles, starting from a and finishing at b, the area is approximately:

sum area under

Now if we let Δx → 0, we can find the exact area by integration:

mathImage

Example of Case 1:

Need Graph Paper?

rectangular grid
Download graph paper

Find the area underneath the curve y = x2 + 2 from x = 1 to x = 2.


Case 2: Curves which are entirely below the x-axis

(for the range of x values being considered):

mathImage

In this case, the integral gives a negative number. We need to take the absolute value of this to find our area:

mathImage

Example of Case 2:

Find the area bounded by y = x2 − 4, the x-axis and the lines x = -1 and x = 2.


Case 3: Part of the curve is below the x-axis and part of the curve is above the x-axis.

mathImage

In this case, we have to sum the individual parts, taking the absolute value for the section where the curve is below the x-axis (from x = a to x = c).

mathImage

Example of Case 3:

What is the area bounded by the curve y = x3, x = -2 and x = 1?

NOTE: In each of Case (1), (2) and (3), the curves are easy to deal with by summing elements L to R:

mathImage

We are (effectively) finding the area by horizontally adding the areas of the rectangles, width dx and heights y (which we find by substituting values of x into f(x)).

So

mathImage

(with absolute value signs where necessary).

Case 4: Certain curves are much easier to sum vertically

(or only possible to sum vertically).

mathImage

In this case, we find the area is the sum of the rectangles, heights x = f(y) and width dy.

If we are given y = f(x), then we need to re-express this as x = f(y) and we need to sum from bottom to top.

So, in case 4 we have:

mathImage

Example of Case 4:

Find the area of the region bounded by the curve

mathImage

the y-axis and the lines y = 1 and y = 5.

نظرات 1 + ارسال نظر
جزیره ریاضیات دوشنبه 24 مرداد‌ماه سال 1390 ساعت 08:29 ق.ظ http://math-home-javanrood.blogfa.com/

سلام به داداش گل کاک رشید یاد دبیرستان و دانشگاه به خیر و انتگرالهای 3 گانه خیلی از این مطلب لذت بردم تداعی شد برام دستت درد نکنه آموزش به این روش باعث ثبیت در ذهن میشه واقعا " جالب بود

خیلی خوشحالم که لذت بردی و خوشتان امد ممنونم

برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد